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Kinks in the discrete sine-Gordon model with Kac-Baker long-range interactions
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1Bogolyubov Institute for Theoretical Physics, 03143 Kiev, Ukraine
2Department of Theoretical Physics of Palacky´ University, CZ-77207 Olomouc, Czech Republic

3Institute of Physics, SAS, SK-84228 Bratislava, Slovak Republic
4Institute for Nuclear Research, 252028 Kiev, Ukraine

~Received 28 September 1999!

We study effects of Kac-Baker long-range dispersive interaction~LRI! between particles on kink properties
in the discrete sine-Gordon model. We show that the kink width increases indefinitely as the range of LRI
grows only in the case of strong interparticle coupling. On the contrary, the kink becomesintrinsically
localizedif the coupling is under some critical value. Correspondingly, the Peierls-Nabarro barrier vanishes as
the range of LRI increases for supercritical values of the coupling but remainsfinite for subcritical values. We
demonstrate that LRI essentially transforms the internal dynamics of the kinks, specifically creating their
internal localizedandquasilocalized modes.

PACS number~s!: 45.50.Jf, 63.20.Ry, 63.20.Pw, 05.45.Yv
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I. INTRODUCTION

The effects of long-range dispersive interactions~LRI’s!
on the dynamics and thermodynamics of soliton-bearing s
tems have attracted a great deal of interest in the past de
@1–22#. Such attention is due to the fact that in realis
physical systems the interparticle forces are always lo
ranged to some extent, and if the range of LRI’s exce
some critical value, they change soliton featuresqualita-
tively. In particular, the competition between short-range a
long-range interactions in anharmonic chains@1–9# and non-
linear Schro¨dinger ~NLS! models@10–14# brings into exis-
tence several types of the soliton states. In the nonlocal
crete NLS model two types of stable soliton states c
coexist at the same excitation number@12#. In other words,
there occurs a bistability phenomenon with a possibility
controlled switching between states@14#. Besides, the power
law LRI manifests itself in algebraic soliton tails@12,8,9# and
can give rise to an energy gap between the spectra of p
waves and the soliton states@9#.

In the present paper we consider the effects of LRI’s
discrete Klein-Gordon~KG! models. These models were su
cessfully used in investigations of a number of physical p
nomena such as dislocations in solids, charge-density wa
adsorbed layers of atoms, domain walls in ferromagnets
ferroelectrics, crowdions in metals, and hydrogen-bon
molecules~see the review paper@23# for references!. As it is
known @16,23# the interparticle interactions in many of the
systems are substantially long-ranged.

In the assumption of the harmonic interaction betwe
particles the dimensionless Hamiltonian of the discrete
model can be written in the form

H5(
n

H 1

2 S dun

dt D 2

1V~un!1
1

2 (
m.n

Jm,n~um2un!2J ,

~1!

where un is the displacement of then-th particle from its
equilibrium position andJm,n is the coupling constant be
tween particlesn andm.
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As far as we know, until now there was only one inve
tigation @16# of the KG model with the power law LRI. It
was shown that the asymptotics of the kink shape as we
the interaction energy of the kinks are power law and,
cause of this, the dependence of the Peierls-Nabarro ba
versus the atom concentration is similar to the ‘‘devil’s sta
case.’’

But KG models with the exponential law~usually called
Kac-Baker! LRI

Jm,n5J~ea21!e2aum2nu ~2!

were believed to have been investigated in an exhaus
fashion @17–22#. As early as 1981, Sarker and Krumhan
found @17# an analytical kink solution for thef4 model. The
width and the energy of the kinks were found to increa
indefinitely asa decreases. An important role of the Ka
Baker LRI in thermodynamics of the system was also sho
Within the decade Woafoet al. considered in a series o
papers@18–20# the discreteness effects in the same mod
They have shown that the Peierls-Nabarro barrier vanishe
a→0.

More recently the sine-Gordon~SG! model

V~un!512cosun ~3!

with Kac-Baker LRI ~2! has been studied@21,22# and all
results of Ref.@17# have been extended to this model. A
implicit form for the kinks has been obtained and the ki
energy and width have been found to grow to infinity asa
→0 in Ref. @21#. The thermodynamics of the system h
been thereafter studied in Ref.@22#.

Thus, the investigations performed in Refs.@17–22# give
the impression that the Kac-Baker LRI always results, in
limit a→0, into infinite increasing of the kink width~and,
therefore, vanishing of the Peierls-Nabarro barrier!. How-
ever, closer inspection shows that this conclusion is pro
for the caseJ.0.5 only.

In the present paper we explore the effects of the K
Baker LRI in the discrete sine-Gordon model~1!–~3! further
4454 © 2000 The American Physical Society
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PRE 61 4455KINKS IN THE DISCRETE SINE-GORDON MODEL . . .
so that we could cover the caseJ,0.5. What is more, we
investigate the internal kink dynamics.

The paper is organized as follows. In Sec. II we derive
equation of motion of the system in the continuum lim
using the technique of pseudodifferential operators. Then
Sec. III we solve this equation and obtain an implicit analy
cal form of the kink solution for arbitrary values ofa andJ.
Turning back to the discrete case we calculate the form
the kinks numerically and compare it with the analytical s
lution. We show that in the case ofJ(ea11),1 the kinks
are intrinsically localized. The calculation of the Peierls
Nabarro barrier as a function ofa andJ finishes the section
It turns out that the Peierls-Nabarro barrier vanishes in
limit a→0 for J.0.5 butremains finitefor J,0.5. In Sec.
IV we develop a variational approach to the internal ki
dynamics and demonstrate that LRI strongly enhances
ation of kink’s internal modes. Then we validate this res
by direct numerical calculations. We show that similar to t
nonsinusoidal Peyrard-Remoissenet potential@24,25#, the
Kac-Baker LRI~2! with smalla createsseveralkink’s inter-
nal modes. By this means our results support the recent
clusion of Kivsharet al. @26# that ‘‘the internal mode is a
fundamental conceptfor many nonintegrable soliton mod
els.’’ Moreover, we show that for large values ofJ, for which
kink’s internal modes do not exist, the Kac-Baker LRI giv
rise to pronouncedquasilocalized modesinside of the pho-
non spectrum. In Sec. V we summarize the obtained res

II. EQUATIONS OF MOTION

The Hamiltonian~1!–~3! generates the equation of motio

d2un

dt2
2 (

mÞn
Jm,n~um2un!1sinun50. ~4!

To obtain its solution analytically we pass to the continuu
limit treating n as a continuous variablen→x5an, wherea
is the distance between particles. Thus, using

un~ t !→u~x,t !, um~ t !→e(am2x)]xu~x,t ! ~5!

and keeping formally all terms in the Taylor expansion
e(am2x)]x, we can cast Eq.~4! in the operator form

] t
2u2

J~ea11!sinh2~a]x/2!

sinh2~a/2!2sinh2~a]x/2!
u1sinu50, ~6!

where]x and ] t are the derivatives with respect tox and t,
respectively, and the identity

(
mÞ0

e2aumu1am]x[
cosh~a]x!2e2a

cosh~a!2cosh~a]x!
~7!

has been used.
In the approximation sinh(a]x/2)'a]x/2 the equation of

motion ~6! takes on the form

] t
2u2

]z
2

12s2]z
2

u1sinu50, ~8!

wherez5x/(aj) with
e

in
-

f
-

e

e-
t
e

n-

ts.

f

j5
AJ~ea11!

2 sinh~a/2!
and s25

1

J~ea11!
. ~9!

Here the parameterj presents a measure for the solito
width — the continuum approximation should be good f
large enough values ofj.

Acting on Eq. ~8! by the operator (12s2]z
2) one can

write the equation of motion in the differential form

utt2uzz1sinu5s2uzztt1s2~sinu!zz, ~10!

which coincides with the equation derived in Ref.@21#. The
authors of that paper found the form of the moving ki
solution neglecting the termuzztt. Thus they have found in
fact an exact solution for immobile kinks but approxima
for moving ones. We have considered the moving kinks
another paper, which will be published elsewhere and
have shown there that the termuzztt is responsible for the
nonperturbative radiation of the moving kinks, so that th
eventually stop. It is why in the present paper we consi
the immobile kinks only. In the next section we write the
exact shape in to some extent more simple and general f
than that given in Ref.@21#.

III. KINK’S STATIC PROPERTIES

A. Analytical kink solution

In this section we obtain the immobile (] t
2u50) kink

solution of Eq.~8!. Denoting this solution asf(y;B), where

y5
z

s
5

2

a
sinhS a

2 D x ~11!

and

B2511
1

s2
511J~ea11!, ~12!

one can see that Eq.~8! takes on the form

]y
2

12]y
2
f~y;B!5

sinf

B221
. ~13!

Using a new variablev5sin(f/2) one can rewrite it in the
polynomial form

~12v2!~B222v2!vyy1v~B22412v2!vy
25v~12v2!2,

~14!

and multiplying by (B222v2)/(12v2)2 one can cast it in
the form of the equation of motion of certain Hamiltonia
system with the Hamiltonian

h5
~B222v2!2

2~12v2!
vy

22
1

2
v2~B22v2!. ~15!

Imposing the kink’s boundary conditions (vy→0 when v
→0) we arrive at the constrainth50. Thus we obtain the
equation
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vy
25

v2~12v2!~B22v2!

~B222v2!2
, ~16!

which after integration gives the kink solution of the form

6~y2y0!5
B

2
logS 11Bm

12Bm D1 logS 12m

11m D
5 (

m51

`
B2m22

2m21
m2m21, ~17!

where a new variable

m5A 12v2

B22v2
~18!

is introduced. Turning back to the functionf(y;B) we ob-
tain an exact form of the kink@positive sign in Eq.~17!# or
antikink ~negative sign! centered aty0:

f~y;B!52arcsinSA12B2m2

12m2 D , ~19!

where the dependence ofm on y is determined by Eq.~17!.
It can be checked that in the nearest-neighbors interac

~NNI! limit ( B→`) the solution reduces to the ordinary S
kink or antikink form

u~z!54arctan$exp@6~z2z0!#%, ~20!

where we have used the variablesu(z) andz defined in the
previous section.

Looking at Eq.~17! one can see that near the center of
kink, wherem is small, the first order term in the Taylo
series vanishes atB5A2. In this case the derivativedm/dy
561/2m2 goes to infinity in the center (m→0) of the kink.
It means that the slope of the kink becomes vertical forB
5A2 ~see Fig. 1!. If B,A2 the slope of the kink assume
negative values and the solution~19! becomesS-shaped
~multivalued! and thus loses its physical meaning.

FIG. 1. The kink shape predicted analytically for different va
ues of the range of LRI: it is usual in the NNI limit (B5`, full
line!, has the vertical slope in the critical case@J(ea11)51 or B
5A2, dotted line#, and is multivalued (S-shaped! in the supercriti-
cal cases ofB51.2 ~dashed line! andB51.1 ~long-dashed line!.
n

e

Thus, returning to the initial physical parametersJ anda
we can state that there exists a critical value ofJ in the
system: ifJ.0.5 the value ofB always exceedsA2 and the
form of the kink does not change drastically witha @see Fig.
2~a!#. It was this case that was studied in details in Re
@21,22#. But if J,0.5 there is some critical value ofa for
which B5A2 and the transition from usual kinks toS-kinks
occurs whena decreases@see Fig. 2~b!#. And now an inter-
esting question should be raised: what is a physicalsingle-
valuedanalogue of theS-kink in the discretecase?

B. Numerical results

The best remedy to answer the above question is to s
Eq. ~4! numerically. Since for a static solution Eq.~4! turns
itself into a system ofN nonlinear algebraic equations~where
N is a number of particles!, it is convenient to use the
Newton-Raphson iterations. To avoid perturbations due
boundary effects~we use a chain with fixed ends! the value
of N was chosen large enough~typically N5500, but it has
been extended to 1000 for broad kinks at smalla and bigJ).
The choice of the initial kink form for zeroth iteration is no
very important since for the given problem the Newto
Raphson iterations are very stable@but to be specific we used
Eq. ~20! for this purpose#. To obtain a stationary kink shap
with the equilibrium positionsun

eq of the particles in a chain
we usually performed 7–20 iterations.

In Figs. 2–3 we compare the form of the kinks foun
numerically for differentJ and a with the solution~17!–

FIG. 2. The comparison of the kink shape predicted analytica
with that found numerically. Two cases must be distinguished:~a!
J.0.5 for which the kink width increases indefinitely with decrea
ing of thea; ~b! J,0.5 for which the kink width remains finite with
decreasing ofa.
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PRE 61 4457KINKS IN THE DISCRETE SINE-GORDON MODEL . . .
~19!. One can see that at smalla the agreement betwee
them is excellent for all values ofJ. The only difference is
that one should cut out the unphysical part of theS-kink and
replace it with a vertical slope to obtain the form of the ki
in the discrete case~see Fig. 3!. In our opinion this result can
be understood by reference to a two-component kink st
ture. Indeed, as it was shown in Refs.@5,6# for the anhar-
monic chain with the Kac-Baker LRI between particles, t
existence of two length scales results into two-compon
soliton structure, where the short-range component is do
nant in the center of the soliton, while the long-range co
ponent@which can be properly described in the continuu
approximation by Eq.~13!# is dominant in the tails.

Thus, now we can conclude that in the discrete SG mo
the LRI affects the kinks in two opposite ways in relation
the value ofJ. WhenJ.0.5 the increasing of the range o
LRI causes the increasing of the kink width in agreem
with the conclusion of Ref.@21#. But for J,0.5 the kinks
becomeintrinsically localizedasa→0. In the latter case the
form of the kink is perfectly described by theS-kink in the
tails with a vertical slope in the center.

Numerical calculations show that in both cases the k
energy monotonically grows to infinity whena decreases to
zero. But the behavior of the Peierls-Nabarro barrier~defined
as an energy difference of the kink centered on a particle
the kink centered between particles! completely correlates
with the behavior of the kink form~see Fig. 4!. When ~for
J.0.5) the kink width grows in the limita→0, the Peierls-
Nabarro barrier vanishes. But when~for J,0.5) the kink
becomes intrinsically localized in this limit, the Peierl
Nabarro barrier remains finite.

IV. KINK’S INTERNAL MODES

In the previous section we were concentrating upon
static properties of the kinks. But a considerable interes
also attracted to the phonon spectrum affected by the p
ence of the kink. It is common knowledge that the influen
of the kink is to some extent similar to that of the impuri
affecting the phonon spectrum in a solid. Namely, not o
quantitative changes in the spectrum, but qualitative o
consisting in emerging thelocalized modeswith frequencies
lying beyond the phonon band are to be expected and pre
special interest@25–30#.

There should be distinguished localizedinternal modes

FIG. 3. The kink shape at smallJ anda: instead of the predicted
analytically multivaluedS-shaped kink we obtain numerically th
intrinsically localizedkink.
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from the localizedtranslational mode. The low-frequency
translational mode~which is in the continuum limit the Gold-
stone mode associated with the translational invariance! is
universally present in an arbitrary KG model. Its frequency
closely associated with the Peierls-Nabarro barrier con
ered above, so we shall not focus much attention on
mode in what follows; instead, we shall consider in detail t
internal modes. These latter play an important role in
kink dynamics because they can temporarily store ene
taken away from the kink’s kinetic energy, which can lat
be restored again in the kinetic energy. This gives rise
resonant structuresin kink interactions@31–34#.

The most extensively studied is the Rice internal mo
@27#, which can be visualized as an oscillation of the kink
core width. Although this mode does not exist@28# in the
usual continuum SG model~which is integrable!, even small
perturbation of the model brings it into the existence@25,26#.
In particular, the Rice mode exists in thediscreteSG model
with NNI @25#. But the discreteness just changes the disp
sion of the system and thedispersiveLRI under consider-
ation affects it even greater. Thus, one might expect that
LRI will enhance the creation of the Rice internal mode
the system being considered. In the next subsection we
course to a variational approach and show that this is ind
so. Then we investigate kink’s internal modes in more de
numerically. It turns out that at smalla there can exist eithe
severalkink’s internal modes below the phonon spectrum
pronouncedquasilocalized modesinside the phonon spec
trum.

A. Variational approach

When, as with thew4–model, the Rice internal mode i
pronounced it can be properly described by a variational c
lective coordinates approach@27#. Proceeding from Eq.~7!
and the identity

(
n

(
m.n

Jm,n~um2un!2[2(
n

un (
mÞn

Jm,n~um2un!,

~21!

one can pass to the continuum limit~5! and write the Hamil-
tonian ~1! in the form

FIG. 4. The dependence of the energyEPN of the Peierls-
Nabarro barrier on the rangea of LRI for different values ofJ. The
barrier vanishes in the limita→0 for J>0.5 but remains finite for
J,0.5.
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H5
1

2 sinh~a/2!
E

2`

`

dyH 1

2 S du

dt D
2

1~12cosu!

2
1

2
u~y,t !

J~ea11!]y
2

12]y
2

u~y,t !J , ~22!

wherey52 sinh(a/2)n.
It should be emphasized that the Rice’s collective coo

nates approach@27# cannot be used in our case. Indee
choosing the trial function of the formf@y/L(t);B#, where
f(y;B) is the stationary kink solution~17!–~19! andL(t) is
a time-dependent variational parameter~so-called ‘‘effective
kink width’’ !, we are unable to integrate analytically th
long-range part of the Hamiltonian~22!.

Thus, we are forced to introduce another trial functio
We call your attention to the fact~see Fig. 1! that the change
of B in the kink solutionf(y;B) changes a slope of the kin
and its width as well. Therefore, to describe small-amplitu
kink oscillations around its stationary form one can u
equally well instead of Rice’s trial function a trial function o
the form

un~ t !5f@2 sinh~a/2!n;b~ t !#, ~23!

where f is determined by Eqs.~17!–~19! and b(t) is the
time-dependent variational parameter. Then, using
f@y;b(t)# is the solution of the equation

]y
2

12]y
2
f@y;b~ t !#5

sinf~y;b!

b221
, ~24!

the integrals appearing in Eq.~22! can be taken analytically

U~b!5E
2`

`

dy~12cosf!54b22 logS b11

b21D , ~25!

V~b!52
1

2E2`

`

dyf sinf52b1~b221!logS b11

b21D ,

~26!

and

M ~b!5E
2`

`

dyS df

dbD 2

5
2

b221
E

0

1/b

dm
F2bm1~b221!logS 11bm

12bm D G2

~12m2!~b2221b2m2!
,

~27!

where the last integral was taken analytically as well, yet
cumbersome expression prevents us from writing it do
here in an explicit form. We just mention thatM (b) grows to
infinity as b→A2 and has the asymptotics

M ~b!.
2p2

3b
1~121p2!

2

3b3
1S 161

46

45
p2D 1

b5
1OS 1

b7D
~28!
i-
,

.

e
e

at

s
n

for big values ofb.
Thus the effective Hamiltonian of the system takes on

form

He f f5
1

2sinh~a/2! H 1

2
M ~b!S db

dt D
2

1W~b!J , ~29!

where the potential energy of the kink

W~b!5U~b!1
B221

b221
V~b!.EK~B!1

4B3

~B221!2
~b2B!2

1O~b2B!3, ~30!

as it would be expected, is minimal in the pointb5B
[A11J(ea11), where it equals to the energy

EK~B!56B1~B223!logS B11

B21D ~31!

of the stationary kink. The kink energy~31! was calculated
first ~although in a more bulky form! in Ref. @21#.

For small deviations ofb from B ~in the harmonic ap-
proximation! the effective Hamiltonian~29! generates the
equation of motion

S d2

dt2
1V2D @b~ t !2B#50 ~32!

being the equation of motion for the harmonic oscillator w
the frequency

V5F 8B3

M ~B!~B221!2G 1/2

, ~33!

whose dependence onB is depicted on Fig. 5.
Thus, a slightly excited kink will oscillate around its sta

tionary shape with the frequencyV, depending upon the pa
rameterB, which specifies the nonlocality of the system
WhenB decreases~nonlocality grows! the frequencyV also
decreases (V→0 whenB→A2). Although Eq.~33! is not
fully precise even in the continuum limit~to improve it an
interaction with phonons should be taken into account@28#!

FIG. 5. The dependence of the frequencyV of the Rice internal
mode on the parameter of the nonlocalityB5A11J(ea11): pre-
dicted analytically by Eq.~33! ~full line! and found numerically for
J50.6 ~diamonds!.
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it is in a good agreement with the numerical calculations~see
Fig. 5!, which are described below.

B. Numerical results

The exposed variational approach~even in a form com-
plicated by introducing of several time-dependent para
eters! permits one to investigate only a limited number
oscillatory modes. To overview rather the entity of the who
phonon spectrum one should deal with the initial set of
equations of motion~4!. Specifically, when all the equilib
rium positionsun

eq of the particles in a chain with a kink
become known by the method described in Sec. III B, we
study the spectrum of small-amplitude oscillations arou
this state by looking for a solution of Eq.~4! in the form

un5un
eq1vneiVt. ~34!

We assume that the deviationsvn of the particles from the
kink shape are sufficiently small (vn!a) and ignore all non-
linear terms in the equations of motion forvn . Introducing
this ansatz into Eq.~4!, we obtain a system of linear equa
tions that can be written in a matrix form

D̂vW 5V2vW , ~35!

wherevW [$vn% and a symmetric matrixD̂ is the dynamical
matrix of the lattice in the presence of a kink with the co
ponents:

Dn,n52J1cosun
eq,

Dn,m5Dm,n52Jn,m . ~36!

By virtue of the fact that the matrixD̂ is symmetric all its
eigenvalues are real. They give us the frequencies of
small-amplitude oscillations around the kink while the co
responding wavevectors describe the spatial profile of e
mode. The eigenvalues and eigenvectors of the matrixD̂
were calculated numerically using the Householder ma
reduction to tridiagonal form and theQL diagonalization al-
gorithm @35#. The obtained results are presented in Fi
6–11. In the following discussion of these results, we assu
that the reader is familiar with Ref.@25# where the basic
features of the kink’s linear spectrum are comprehensiv
expounded.

In Fig. 6 we compare the kink’s linear spectrumV(J) for
a50.5 with the spectrum obtained in Ref.@25# for the NNI
limit ( a5`). As it has there been shown, in the discrete
model with the interaction between nearest neighbors a
from the low-frequency translational localized mode the
exist ~slightly expressed in the interval 0.27&J&1.59) the
Rice internal mode. One can see from Fig. 6 that fora
50.5 the situation remains qualitatively the same, exc
that the Rice mode becomes evidently pronounced. Thu
agreement with the results of the variational approach,
LRI strongly enhances creation of the Rice mode~see also
Fig. 5!.

Furthermore, whena yet decreases, there occur ne
qualitative phenomena. Foremost, additional localized in
nal modes are split out from the bottom of the phonon sp
trum. This process is easily observable in Fig. 7 where
-

e

n
d

-

e
-
ch

x

.
e

ly

de
e

t
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e

r-
c-
e

kink’s linear spectrumV as a function ofa is plotted forJ
50.6. One can see that the number of localized modes gr
indefinitely asa vanishes. In particular, there are four loca
ized modes ata50.2 @see Fig. 8~a!# and seven ata50.1
@see Fig. 8~b!#. All the localized internal modes are best pr
nounced aroundJ.0.6. Closer analytical examination o
Eqs.~35!–~36! shows that all eigenstates are either symm
ric or antisymmetric. One can state on the strength of
numerical calculations that the symmetric and antisymme
states are always alternating, starting with the symme
translational mode~Mode 1 in Fig. 9! and antisymmetric
Rice mode~Mode 2 in Fig. 9!.

Another interesting feature that appears in the kink’s l
ear spectrum at smalla is that there exist an apparent tran

FIG. 6. Spectrum of small-amplitude excitations around a k
as a function of the coupling parameterJ for: ~a! a5` and ~b! a
50.5.

FIG. 7. Spectrum of small-amplitude excitations around a k
as a function of the nonlocality parametera for J50.6.



th

nd
n
e
re
g
a

co-
tric

d
ds
-
o-

the

s
ec-
ntial
ely,
illa-

se
in

th

s in
o-
in

in

th

ates

as a

silo-

4460 PRE 61MINGALEEV, GAIDIDEI, MAJERNÍKOVÁ, AND SHPYRKO
formation of the phonon spectrum~in the planeV2J) along
an imaginary line~let us call it ‘‘ridge’’!, which extends the
localized internal modes inside the phonon spectrum in
direction of largerJ ~see Fig. 8!. This ridge is evidently
parallel to the upper cut-off frequency of the phonon ba
with the spectrum curves looking like essentially differe
left or right from the ridge. In the domain right to the ridg
each symmetric eigenstate is equidistant from both nea
antisymmetric eigenstates. In the domain left to the rid
each symmetric eigenstate is paired with an appropriate

FIG. 8. Spectrum of small-amplitude excitations around a k
as a function of the coupling parameterJ for: ~a! a50.2 and~b!
a50.1.

FIG. 9. Example of the shape of the lowest localized modes:
translational mode~Mode 1!, the Rice mode~Mode 2!, and so on.
e

,
t

st
e
n-

tisymmetric eigenstate: their frequencies become almost
incident. The shapes of the symmetric and antisymme
states in a pair are also in a close correlation:vn

a.u(n
2n0)vn

s , where n0 is the position of the kink center an
u(x) is the Heaviside function. The ridge is shifted towar
the upper cut-off frequency asa grows and completely dis
appears~or rather coincides with the upper edge of the ph
non band! in the NNI limit (a5`).

The most interesting phenomenon however concerns
shape of the eigenstates in the vicinity of the ridge~see Fig.
10!. One can see that both above~e.g., mode 40 in Fig. 10!
and below~e.g., mode 8 in Fig. 10! the ridge the eigenstate
are delocalized as it is expected to be in the continuum sp
trum. But the shape of the eigenstates undergoes esse
changes when approaching the ridge frequency. Nam
such eigenstates practically have no distortion in the osc
tory subspace and thus arequasilocalized~see modes 11–13
in Fig. 10!. It should be indicated a similarity between the
quasilocalized states and the ‘‘exotic states’’ investigated
Refs.@36–38#, although we could not yet provide an in-dep
analysis of this analogy.

It is notable that the quasilocalization of the eigenstate
the vicinity of the ridge frequency is accompanied by pr
nounceddenseningof the eigenstates which can be viewed

k

e

FIG. 10. The shape of the delocalized and quasilocalized st
inside the phonon band forJ51.25 anda50.1.

FIG. 11. The density of the eigenstates in the phonon band
funcion of the eigenfrequency forJ52.0 anda50.1. The pro-
nounced densening of the eigenstates in the vicinity of the qua
calized states is observed.
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Fig. 11 where we plot~at fixeda andJ) the density of the
eigenstates as function of frequency. Because of this p
liarity inside the phonon spectrum, the ridge of quasiloc
ized states should be observable experimentally.

V. CONCLUSIONS

We have investigated the effects of the Kac-Baker lo
range interaction on the kink’s properties in the discrete s
Gordon model. We have obtained an implicit form for t
kink’s shape and energy and have shown that the kink w
increases indefinitely asa vanishes only in the case of stron
interparticle coupling (J.Jcr50.5). On the contrary, the
kink becomesintrinsically localized for J(ea11),1. Ac-
cordingly, we have shown that the Peierls-Nabarro bar
vanishes asa→0 for supercritical values of the couplingJ
but remainsfinite for subcritical values. We have develope
a new variant of the collective coordinates variational a
proach for investigation of the internal kink’s dynamics a
have shown that the Kac-Baker LRI essentially enhances
ys

ys

s,

ev

O

O

. B

n

n

u-
l-

-
-

th

r

-

e-

ation of the kink’sinternal localized modes. We have dem-
onstrated numerically that indefinite number of the localiz
internal modes came into existence whena approaches zero
We have revealed an existence of thequasilocalized states
inside the phonon spectrum for smalla and largeJ. We have
described their properties, in particular, a pronounced de
ening of the phonon spectrum in the vicinity of the quasi
calized states. We expect that similar to the localized inter
modes, the quasilocalized states could play a part in the k
dynamics.

ACKNOWLEDGMENTS

S.M. and S.Sh. thank the Department of Theoretical Ph
ics of the Palacky´ University in Olomouc for their hospital-
ity. S.M., E.M., and S.Sh. acknowledge support from t
Grant Agency of the Czech Republic~Grant No.
202/98/0166! and partly from the VEGA~Grant No. 2/4109/
99!. S.M. and Yu.G. acknowledge partial support from t
DLR through Project No. UKR–002–99.
ns.

ns.

rd,

D

D

n-
@1# Y. Ishimori, Prog. Theor. Phys.68, 402 ~1982!.
@2# M. Remoissenet and N. Flytzanis, J. Phys. C18, 1573~1985!.
@3# C. Tchawoua, T.C. Kofane, and A.S. Bokosah, J. Phys. A26,

6477 ~1993!.
@4# A. Neuper, Y. Gaididei, N. Flytzanis, and F. Mertens, Ph

Lett. A 190, 165 ~1994!.
@5# Y. Gaididei, N. Flytzanis, A. Neuper, and F.G. Mertens, Ph

Rev. Lett.75, 2240~1995!.
@6# Y. Gaididei, N. Flytzanis, A. Neuper, and F.G. Merten

Physica D107, 83 ~1997!.
@7# D. Bonart, Phys. Lett. A231, 201 ~1997!.
@8# S. Flach, Phys. Rev. E58, R4116~1998!.
@9# S.F. Mingaleev, Y.B. Gaididei, and F.G. Mertens, Phys. R

E 58, 3833~1998!.
@10# Y.B. Gaididei, S.F. Mingaleev, P.L. Christiansen, and K.” .

Rasmussen, Phys. Lett. A222, 152 ~1996!.
@11# Y.B. Gaidideiet al., Phys. Scr.67, 151 ~1996!.
@12# Y.B. Gaididei, S.F. Mingaleev, P.L. Christiansen, and K.” .

Rasmussen, Phys. Rev. E55, 6141~1997!.
@13# K.O” . Rasmussenet al., Physica D113, 134 ~1998!.
@14# M. Johansson, Y.B. Gaididei, P.L. Christiansen, and K.O” . Ras-

mussen, Phys. Rev. E57, 4739~1998!.
@15# L. Cruzeiro-Hansson, Phys. Lett. A249, 465 ~1998!.
@16# O.M. Braun, Y.S. Kivshar, and I.I. Zelenskaya, Phys. Rev

41, 7118~1990!.
@17# S.K. Sarker and J.A. Krumhansl, Phys. Rev. B23, 2374

~1981!.
@18# P. Woafo, T.C. Kofane, and A.S. Bokosah, J. Phys.: Conde

Matter 3, 2279~1991!.
@19# P. Woafo, T.C. Kofane, and A.S. Bokosah, J. Phys.: Conde

Matter 4, 3389~1992!.
@20# P. Woafo, T.C. Kofane, and A.S. Bokosah, Phys. Rev. B48,

10 153~1993!.
.

.

.

s.

s.

@21# P. Woafo, J.R. Kenne, and T.C. Kofane, J. Phys.: Conde
Matter 5, L123 ~1993!.

@22# J.R. Kenne, P. Woafo, and T.C. Kofane, J. Phys.: Conde
Matter 6, 4277~1994!.

@23# O.M. Braun and Y.S. Kivshar, Phys. Rep.306, 1 ~1998!.
@24# M. Peyrard and M. Remoissenet, Phys. Rev. B26, 2886

~1982!.
@25# O.M. Braun, Y.S. Kivshar, and M. Peyrard, Phys. Rev. E56,

6050 ~1997!.
@26# Y.S. Kivshar, D.E. Pelinovsky, T. Cretegny, and M. Peyra

Phys. Rev. Lett.80, 5032~1998!.
@27# M.J. Rice, Phys. Rev. B28, 3587~1983!.
@28# R. Boesch and C.R. Willis, Phys. Rev. B42, 2290~1990!.
@29# M.V. Gvozdikova, A.S. Kovalev, and Y.S. Kivshar, Low

Temp. Phys.24, 479 ~1998!.
@30# D.E. Pelinovsky, Y.S. Kivshar, and V.V. Afanasjev, Physica

116, 121 ~1998!.
@31# D.K. Campbell, J.F. Schonfeld, and C.A. Wingate, Physica

9, 1 ~1983!.
@32# M. Peyrard and D.K. Campbell, Physica D9, 33 ~1983!.
@33# D.K. Campbell, M. Peyrard, and P. Sodano, Physica D19, 165

~1986!.
@34# Y.S. Kivshar, F. Zhang, and L. Vazquez, Phys. Rev. Lett.67,

1177 ~1991!.
@35# W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Fla

nery,Numerical Recipes in C, 2nd ed.~Cambridge University
Press, Cambridge, 1997!.

@36# H. Eiermann, A. Ko¨ngeter, and M. Wagner, J. Lumin.48&49,
91 ~1991!.

@37# H. Eiermann and M. Wagner, J. Chem. Phys.96, 4509~1992!.
@38# M. Sonnek, H. Eiermann, and M. Wagner, Phys. Rev. B51,

905 ~1995!.


