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Kinks in the discrete sine-Gordon model with Kac-Baker long-range interactions
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We study effects of Kac-Baker long-range dispersive interacti®ti) between particles on kink properties
in the discrete sine-Gordon model. We show that the kink width increases indefinitely as the range of LRI
grows only in the case of strong interparticle coupling. On the contrary, the kink beciotnesically
localizedif the coupling is under some critical value. Correspondingly, the Peierls-Nabarro barrier vanishes as
the range of LRI increases for supercritical values of the coupling but rerfiaitesfor subcritical values. We
demonstrate that LRI essentially transforms the internal dynamics of the kinks, specifically creating their
internal localizedand quasilocalized modes

PACS numbgs): 45.50.Jf, 63.20.Ry, 63.20.Pw, 05.45.Yv

[. INTRODUCTION As far as we know, until now there was only one inves-
tigation [16] of the KG model with the power law LRI. It
The effects of long-range dispersive interactidghRlI's)  was shown that the asymptotics of the kink shape as well as
on the dynamics and thermodynamics of soliton-bearing syshe interaction energy of the kinks are power law and, be-
tems have attracted a great deal of interest in the past decadause of this, the dependence of the Peierls-Nabarro barrier
[1-22]. Such attention is due to the fact that in realistic versus the atom concentration is similar to the “devil’s stair-
physical systems the interparticle forces are always longease.”
ranged to some extent, and if the range of LRI's exceeds But KG models with the exponential lafusually called
some critical value, they change soliton featurpsalita-  Kac-Bakej LRI
tively. In particular, the competition between short-range and
long-range interactions in anharmonic chdihs9] and non- Jmn=J(e*— 1)e @m-nl (2
linear Schrdinger (NLS) models[10—14 brings into exis-
tence several types of the soliton states. In the nonlocal diswere believed to have been investigated in an exhaustive
crete NLS model two types of stable soliton states carfashion[17-22. As early as 1981, Sarker and Krumhansl
coexist at the same excitation numtj&e]. In other words, found[17] an analytical kink solution for thet* model. The
there occurs a bistability phenomenon with a possibility ofwidth and the energy of the kinks were found to increase
controlled switching between stafedsl]. Besides, the power- indefinitely asa decreases. An important role of the Kac-
law LRI manifests itself in algebraic soliton tafl$2,8,9 and  Baker LRI in thermodynamics of the system was also shown.
can give rise to an energy gap between the spectra of plan®ithin the decade Woaf@t al. considered in a series of
waves and the soliton statfs). papers[18-2(Q the discreteness effects in the same model.
In the present paper we consider the effects of LRI's inThey have shown that the Peierls-Nabarro barrier vanishes as
discrete Klein-GordotKG) models. These models were suc- ¢—0.
cessfully used in investigations of a number of physical phe- More recently the sine-Gordoi$G) model
nomena such as dislocations in solids, charge-density waves,
adsorbed layers of atoms, domain walls in ferromagnets and V(u,)=1-cosu, 3
ferroelectrics, crowdions in metals, and hydrogen-bonded
molecules(see the review pap¢23] for referencep As itis  with Kac-Baker LRI (2) has been studief21,22 and all
known[16,23 the interparticle interactions in many of these results of Ref[17] have been extended to this model. An
systems are substantially long-ranged. implicit form for the kinks has been obtained and the kink
In the assumption of the harmonic interaction betweerenergy and width have been found to grow to infinityaas

2

particles the dimensionless Hamiltonian of the discrete KG- 0 in Ref.[21]. The thermodynamics of the system has
model can be written in the form been thereafter studied in R¢R2].

1id L Thus, the investigations performed in Ref$7-23 give

_ Un 2 the impression that the Kac-Baker LRI always results, in the
H=2 [E(W VU5 2 ImalUn=Un)? limit a—0, into infinite increasing of the kink widtkand,
(1)  therefore, vanishing of the Peierls-Nabarro bajri¢tow-

ever, closer inspection shows that this conclusion is proper

where u, is the displacement of the-th particle from its for the casel>0.5 only.

equilibrium position andl, , is the coupling constant be- In the present paper we explore the effects of the Kac-

tween particlesr andm. Baker LRI in the discrete sine-Gordon mod&)—(3) further
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so tha}t we cou!d cover t.he cas]e:Q.S. What is more, we J(e“+1) 1

investigate the internal kink dynamics. ¢=-———— and
The paper is organized as follows. In Sec. Il we derive the 2 sinf(2/2)

equation of motion of the system in the continuum limit .

using the technique of pseudodifferential operators. Then, iiere the paramete presents a measure for the soliton

Sec. Il we solve this equation and obtain an implicit analyti-Width — the continuum approximation should be good for

cal form of the kink solution for arbitrary values efandJ.  large enough values )

Turning back to the discrete case we calculate the form of Acting on Eq.(8) by the operator (+0%d;) one can

the kinks numerically and compare it with the analytical so-Write the equation of motion in the differential form

lution. We show that in the case dfe“+1)<1 the kinks i ) 5

are intrinsically localized The calculation of the Peierls- Uty — Uzz+ SINU= 07Uzt 07(SINU) £z, (10)

Nabarro barrier as a function af andJ finishes the section. . L . . . .
It turns out that the Peierls-Nabarro barrier vanishes in thdvhich coincides with the equation derived in RgZ1]. The

limit «—0 for J>0.5 butremains finitefor J<0.5. In Sec. authors of that paper found the form of the moving kink
IV we develop a variational approach to the internal kink SClution neglecting the term,,,. Thus they have found in

dynamics and demonstrate that LRI strongly enhances cr%@Ct an exact solution for immobile kinks but approximate
ation of kink’s internal modes. Then we validate this result/o" Moving ones. We have considered the moving kinks in
another paper, which will be published elsewhere and we

by direct numerical calculations. We show that similar to the! ; ,
nonsinusoidal Peyrard-Remoissenet potenf2d,25, the ave shown _there t_ha_t the term,y is respon3|ble for the
nonperturbative radiation of the moving kinks, so that they

Kac-Baker LRI(2) with small « createseveralkink’s inter- ; ) i
nal modes. By this means our results support the recent coffventually stop. It is why in the present paper we consider
the immobile kinks only. In the next section we write their

clusion of Kivsharet al. [26] that “the internal mode is a i i
fundamental concepor many nonintegrable soliton mod- exact shape in t_o some extent more simple and general form
els.” Moreover, we show that for large valuesbffor which  than that given in Ref.21].

kink’s internal modes do not exist, the Kac-Baker LRI gives

rise to pronouncedjuasilocalized modewside of the pho- lll. KINK'S STATIC PROPERTIES

non spectrum. In Sec. V we summarize the obtained results.

2:—
7 e 1) ®

A. Analytical kink solution

Il. EQUATIONS OF MOTION In this section we obtain the immobile?f(u=0) kink

o _ ~solution of Eq.(8). Denoting this solution a&(y;B), where
The Hamiltonian(1)—(3) generates the equation of motion

zZ 2 |a 11
d?u y=—=—sinh = |x
T 3, (U —up) +sinu,=0. (4) o a 2
dt?2  m#n
and
To obtain its solution analytically we pass to the continuum
limit treatingn as a continuous variable—x=an, wherea 5 1 N
is the distance between particles. Thus, using B*=1+ 2= 1+J(e“+1), (12
Up(D)—u(x,t),  Up(t)—e@M9%u(x,t) (5)

one can see that EB) takes on the form
and keeping formally all terms in the Taylor expansion of

el@M X% we can cast Eq4) in the operator form 5 sing
12 #(y;B)= B 1’ (13
5 J(e*+1)sintf(ady/2) . y
TU—— - u+sinu=0, (6) ) ) _ o
sinkP(a/2) — sintf(ady/2) Using a new variable =sin(¢/2) one can rewrite it in the

polynomial form
whered, and d, are the derivatives with respect xoandt,
respectively, and the identity (1-v?)(B2=2v?)vy+v(B?=4+2v?)vi=v(1-0v?)?

coshad,)—e ¢ a4

E e—a\m\+am(9XE (7) ) ] o
o cosh a) —cosHady) and multiplying by 82—2v?)/(1—v?)? one can cast it in
the form of the equation of motion of certain Hamiltonian
has been used. system with the Hamiltonian
In the approximation sinkg,/2)~ad,/2 the equation of ) -
motion (6) takes on the form B°—2v 1
© po O 20 2) vy~ 5vA(B%=v?). (15)
2 2(1-v°)
92U—————u+sinu=0, 8 . . o
! 1—gza§ ® Imposing the kink’s boundary conditions)(—0 whenwv

—0) we arrive at the constraitit=0. Thus we obtain the
wherez=x/(a¢) with equation
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FIG. 1. The kink shape predicted analytically for different val-
ues of the range of LRI: it is usual in the NNI limiBE& «, full
line), has the vertical slope in the critical cdsKe“+1)=1 orB
=./2, dotted lind, and is multivalued §-shapedlin the supercriti-
cal cases oB=1.2 (dashed lingandB= 1.1 (long-dashed ling

) (b)

, vA(1-v?)(B*~v?)
U =
y (82_202)2

: (16)

which after integration gives the kink solution of the form

N B 1+Bu 1—u
+(y—Yo)=5log 1-Bu +log Tru n
FIG. 2. The comparison of the kink shape predicted analytically
* B2m_»o with that found numerically. Two cases must be distinguistiad:
= 2 ,uzm_l, (17) J>0.5 for which the kink width increases indefinitely with decreas-
m=1 2m—1 ing of thea; (b) J<0.5 for which the kink width remains finite with
. decreasing ofx.
where a new variable
Thus, returning to the initial physical parametdrand «
1—v? we can state that there exists a critical valueJoih the
#= N ga_,2 (18) system: ifJ>0.5 the value oB always exceeds2 and the

form of the kink does not change drastically with see Fig.

is introduced. Turning back to the functiah(y;B) we ob- ~ 2(a)]. It was this case that was studied in details in Refs.
tain an exact form of the kinkpositive sign in Eq(17)] or ~ [21,22. But if J<0.5 there is some critical value of for
antikink (negative sighcentered ay/: which B= /2 and the transition from usual kinks &kinks

occurs wherx decreasefsee Fig. 2b)]. And now an inter-
1-B?p? esting question should be raised: what is a physsaadle-
¢(y;B)=2arcsi -
1-u
where the dependence pfony is determined by Eq(17).

, (190 valuedanalogue of thes-kink in the discretecase?
It can be checked that in the nearest-neighbors interaction The best remedy to answer the above question is to solve
(NNI) limit (B—o) the solution reduces to the ordinary SG EQ. (4) numerically. Since for a static solution E@) turns

B. Numerical results

kink or antikink form itself into a system oN nonlinear algebraic equatiofshere
N is a number of particlgs it is convenient to use the
u(z)=4arctafexd = (z—2zy)1}, (20 Newton-Raphson iterations. To avoid perturbations due to

boundary effectgwe use a chain with fixed endthe value

where we have used the variablg&) andz defined in the  of N was chosen large enougtypically N=500, but it has
previous section. been extended to 1000 for broad kinks at smadind bigJ).

Looking at Eq.(17) one can see that near the center of theThe choice of the initial kink form for zeroth iteration is not
kink, where u is small, the first order term in the Taylor very important since for the given problem the Newton-
series vanishes &= /2. In this case the derivatividu/dy ~ Raphson iterations are very stabbeit to be specific we used
= =1/2u? goes to infinity in the center— 0) of the kink.  Eq. (20) for this purposg To obtain a stationary kink shape
It means that the slope of the kink becomes verticalBor with the equilibrium positionsi;” of the particles in a chain
=2 (see Fig. 1 If B<\2 the slope of the kink assumes we usually performed 7—20 iterations.
negative values and the solutiqd9) becomesS-shaped In Figs. 2—3 we compare the form of the kinks found
(multivalued and thus loses its physical meaning. numerically for differentd and a with the solution(17)—
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FIG. 3. The kink Shape at smdlland«: instead of the predicted FIG. 4. The dependence of the eneray)N of the Peierls-
analytically multivalueds-shaped kink we obtain numerically the Nabarro barrier on the rangeof LRI for different values of. The
intrinsically localizedkink. barrier vanishes in the limit—0 for J=0.5 but remains finite for

J<0.5.
(19). One can see that at small the agreement between

them is excellent for all values af The only difference is

that one should cut out the unphysical part of Skink and from the localizedtranslational mode The low-frequency

replace it with a vertical slope to obtain the form of the kinktranslational modéwhich is in the continuum limit the Gold-
in?he discrete castsee Fi § In our opinion this result can stone mode associated with the translational invaripige
9- P universally present in an arbitrary KG model. Its frequency is

be understood by reference to a two-component kink Struc(’:Iosely associated with the Peierls-Nabarro barrier consid-
ture. Indeed, as it was shown in Ref§,6] for the anhar-

. e - ered above, so we shall not focus much attention on this
monic chain with the Kac-Baker LRI between particles, themode in what follows; instead, we shall consider in detail the

existence of o length scales results into two-componenjl‘memal modes. These latter play an important role in the
sohtop structure, where the _short-range component is domlIZink dynamics because they can temporarily store energy
nant in the. center of the soliton, whﬂg the. Iong—range_,- COMiaken away from the kink’s kinetic energy, which can later
ponent[which can be properly described in the continuum

approximation by Eq(13)] is dominant in the tails. be restored again in the kinetic energy. This gives rise to

) . resonant structurem kink interactiong31—-34.
Thus, now we can conclude that in the discrete SG model The most extensively studied is the Rice internal mode

the LRI affects the Kinks in two Qppositg ways in relation to [27], which can be visualized as an oscillation of the kink’s
the value ofJ. WhenJ>0.5 the increasing of the range of core width. Although this mode does not exj&g] in the

LRI causes the increasing of the kink width in agreememiJ : i

. . ) sual continuum SG modélhich is integrablg even small
with the_ co_nc_lusmn of Ref[Zl]. But for J<0.5 the kinks perturbation of the model brings it into the existefiz,2§.
becomeintrinsically localizedas«— 0. In the latter case the In particular, the Rice mode exists in ttiscreteSG model
form of the kink is perfectly described by tigkink in the iy N [25]. But the discreteness just changes the disper-

tails with a vertical sIc_Jpe in the center. ._.sion of the system and thaispersiveLRI under consider-
Numerical calculations show that in both cases the kmka

) o tion affects it even greater. Thus, one might expect that the
energy monotomcalily grows to [nf|n|ty whan decrga;es 0 LRI will enhance the creation of the Rice internal mode in
zero. But the behavior of the Peierls-Nabarro ba'(mf”?ed the system being considered. In the next subsection we re-
as an energy difference of the kink centered on a particle an

he kink db N letel | ourse to a variational approach and show that this is indeed
the kink centered between particlesompletely correlates s, 1o e investigate kink's internal modes in more detail
with the behavior of the kink fornisee Fig. 4. When (for

0 he Kink width in the limitv— 0. the Peierl numerically. It turns out that at small there can exist either
J>0.5) the INKWI t. grows in the limit—0, the CIENS- severalkink’s internal modes below the phonon spectrum or
Nabarra barrlgr .vanlshes. .BUt V\(héfqr ‘].<0.'5) the k"_"k pronouncedquasilocalized modesside the phonon spec-
becomes intrinsically localized in this limit, the Peierls-

. . o trum.
Nabarro barrier remains finite.

IV. KINK’S INTERNAL MODES A. Variational approach

. 4 . . .
In the previous section we were concentrating upon the When, as with thep"—model, the Rice internal mode is

- : : : : . pronounced it can be properly described by a variational col-
static properties of the kinks. But a considerable interest Ii;ctive coordinates approadd7]. Proceeding from Eq(7)

also attracted to the phonon spectrum affected by the pres: ) .
ence of the kink. It is common knowledge that the inﬂuenceand the identity
of the kink is to some extent similar to that of the impurity
affecting the phonon spectrum in a solid. Namely, not only >, > Jon(Un—Un)?=— 2, Up > Jmn(Um—Up),
quantitative changes in the spectrum, but qualitative ones " ™" no m#n

consisting in emerging thiecalized modesvith frequencies (22)
lying beyond the phonon band are to be expected and present
special interesf25-30. one can pass to the continuum linf) and write the Hamil-

There should be distinguished localizatternal modes tonian(1) in the form
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1 * 1/du\? L2 o =(12'/1t2)1/2
H:Wf_wdyiz(a *(1-cosu) N —
. / PO i i i i
1 J(e*+ 1)(92 08 b
—Su(y,t) ———— Uy, |, (22 Q
2 1-92 $
y os|t |8
i > —— variational approach
wherey =2 sinh@/2)n. 3 e
It should be emphasized that the Rice’s collective coordi- 02p 8 numerical (for 3=0.6)
nates approachi27] cannot be used in our case. Indeed, 0.0

choosing the trial function of the fornp[y/L(t);B], where 1 2 3 4 5
¢(y;B) is the stationary kink solutiofil7)—(19) andL(t) is B

a time-dependent variational parameiss-called “effective
kink width”), we are unable to integrate analytically the
long-range part of the Hamiltoniai22).

Thus, we are forced to introduce another trial function.
We call your attention to the fa¢see Fig. 1that the change
of B in the kink solutiong(y;B) changes a slope of the kink for big values ofb
and its width as well. Therefore, to describe small-amplitude Thus the effecfive Hamiltonian of the system takes on the
kink oscillations around its stationary form one can Userom
equally well instead of Rice’s trial function a trial function of
the form

FIG. 5. The dependence of the frequelityof the Rice internal
mode on the parameter of the nonlocalBy- y1+J(e“+1): pre-
dicted analytically by Eq(33) (full line) and found numerically for
J=0.6 (diamonds.

2

1
H Z.—[—I\/I(b)<— +W(b)}, (29
Un(t) = G[2 sinfta/2)n;b(1)], (23 * 2sinf(af2) |27 dt
where ¢ is determined by Eqs(17)—(19) and b(t) is the ~Where the potential energy of the kink

time-dependent variational parameter. Then, using that 5 3

¢[y;b(t)] is the solution of the equation W(b)=U(b — V(b)=E.(B 4 b—B)2
2 (b)=U(b)+ 5 VID=Ex(B)+ 55 (b=B)
ay sing(y;b)
. — 2 _ 3
-2 ALybO]=— 5=, (24) +0(b=B)*, (30

) o _ as it would be expected, is minimal in the poiht=B
the integrals appearing in ER2) can be taken analytically: — 1+J(e“+1), where it equals to the energy

* b+1 B+1

U(b)=f_xdy(1—cos¢)=4b—2 log y—7|. (29 Ex(B)=6B+(B2-3)log ﬂ) (3D

1 ) ) b+1 of the stationary kink. The kink energ1) was calculated
V(b)=— QJ_md)@ sing=2b+(b"—~1)log ;—7 | first (although in a more bulky forinin Ref. [21].
(26) For small deviations ob from B (in the harmonic ap-
proximation the effective Hamiltonian29) generates the
and equation of motion
= s —+02?|[b(t)—B]=0 32
M (b) fxdy(db> ~+02|[b)-B) (32
1+bu)||? being the equation of motion for the harmonic oscillator with
2_ -
2bp+(b"~1)log 1—b,u” the frequency

2 fl/b
- d
b2—1Jo 1 (1— u?)(b?— 2+ b%u?d) 1

8B3

M(B)(B2—1)? 33

27) Q=

where the last integral was taken analytically as well, yet 'tswhose dependence @is depicted on Fig. 5.

cumbersome expression prevents us from writing it down Thus, a slightly excited kink will oscillate around its sta-

here in an explicit form. We just mention thisit(b) grows to . h ith the f d di h
infinity asb— 2 and has the asymptotics tionary shape with the _r_equen@/, epending upon the pa-
n rameter B, which specifies the nonlocality of the system.

02 2 46 1 1 WhenB decreasegnonlocality grows the frequency) also
M(b)= o+ (12+ 72)—— + | 16+ _772)_ Lol = decreases(8—0 whenB— 2). Although Eq.(33) is not
3b 3b3 45" /p° b’ fully precise even in the continuum limito improve it an

(28) interaction with phonons should be taken into accd@aj)
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it is in a good agreement with the numerical calculatitsese 2.0

Fig. 5, which are described below.

B. Numerical results

The exposed variational approa@ven in a form com- o
plicated by introducing of several time-dependent param-
eterg permits one to investigate only a limited number of
oscillatory modes. To overview rather the entity of the whole
phonon spectrum one should deal with the initial set of the
equations of motior(4). Specifically, when all the equilib-
rium positionsu;? of the particles in a chain with a kink
become known by the method described in Sec. Il B, we can
study the spectrum of small-amplitude oscillations around
this state by looking for a solution of E¢4) in the form

Up=US%4p et (34)

We assume that the deviationg of the particles from the
kink shape are sufficiently smalb (<a) and ignore all non-
linear terms in the equations of motion foy,. Introducing
this ansatz into Eq(4), we obtain a system of linear equa-
tions that can be written in a matrix form

>

Duv=02%, (35)

0.0 0.5 1.0 15 2.0

wherev={v,} and a symmetric matri© is the dynamical

matrix of the lattice in the presence of a kink with the com- J
ponents: FIG. 6. Spectrum of small-amplitude excitations around a kink
o as a function of the coupling parametkfor: (a) a=« and(b) a
Dy.n=2J+cosug?, —0.5.
Dnm=Dmn=—Jdnm- (36)  kink’s linear spectrum) as a function ofx is plotted forJ

. =0.6. One can see that the number of localized modes grows

By virtue of the fact that the matriP is symmetric all its  indefinitely asa vanishes. In particular, there are four local-
eigenvalues are real. They give us the frequencies of thged modes aw=0.2 [see Fig. 8)] and seven aw=0.1
small-amplitude oscillations around the kink while the cor-[see Fig. 8)]. All the localized internal modes are best pro-
responding wavevectors describe the spatial profile of eacfounced around=0.6. Closer analytical examination of
mode. The eigenvalues and eigenvectors of the mddrix Egs.(35—(36) shows that all eigenstates are either symmet-
were calculated numerically using the Householder matrixic or antisymmetric. One can state on the strength of the
reduction to tridiagonal form and tH@L diagonalization al- numerical calculations that the symmetric and antisymmetric
gorithm [35]. The obtained results are presented in Figsstates are always alternating, starting with the symmetric
6—11. In the following discussion of these results, we assum&anslational modgMode 1 in Fig. 9 and antisymmetric
that the reader is familiar with Ref25] where the basic Rice mode(Mode 2 in Fig. 9.
features of the kink’s linear spectrum are comprehensively Another interesting feature that appears in the kink’s lin-
expounded. ear spectrum at smadt is that there exist an apparent trans-

In Fig. 6 we compare the kink’s linear spectré{J) for
a=0.5 with the spectrum obtained in R¢R5] for the NNI /e
limit («=). As it has there been shown, in the discrete SG L0 HF0
model with the interaction between nearest neighbors aside 1
from the low-frequency translational localized mode there
exist (slightly expressed in the interval 0.20=<1.59) the
Rice internal mode. One can see from Fig. 6 that for
=0.5 the situation remains qualitatively the same, except
that the Rice mode becomes evidently pronounced. Thus, in
agreement with the results of the variational approach, the
LRI strongly enhances creation of the Rice madee also
Fig. 5. 0.0

Furthermore, whena yet decreases, there occur new
qualitative phenomena. Foremost, additional localized inter-
nal modes are split out from the bottom of the phonon spec- FIG. 7. Spectrum of small-amplitude excitations around a kink
trum. This process is easily observable in Fig. 7 where thas a function of the nonlocality parameterfor J=0.6.

0.5

0.0 0.5 1.0 1.5
o
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Mode 40

Mode 13
5=  Mode 12

™ | | m
0.0 0.5 1.0 1.5 2.0
J . . .
20 -250 g 250
FIG. 10. The shape of the delocalized and quasilocalized states
L5t inside the phonon band fdr=1.25 anda=0.1.
Q 10 (b) tisymmetric eigenstate: their frequencies become almost co-
\/ incident. The shapes of the symmetric and antisymmetric
N states in a pair are also in a close correlatiofi=6(n
05 \/ —ng)vy, Whereng is the position of the kink center and
\/ 0(x) is the Heaviside function. The ridge is shifted towards
0.0 S , , the upper cut-off frequency as grows and completely dis-
0.0 0.5 1.0 1.5 2.0 appeargor rather coincides with the upper edge of the pho-
J non bandl in the NNI limit (a=).

) L ) The most interesting phenomenon however concerns the
FIG. 8. Spectrum of small-amplitude excitations around a k'nkshape of the eigenstates in the vicinity of the ridgee Fig.
as a function of the coupling parametgfor: (a) «=0.2 and(b) 10). One can see that both abofg., mode 40 in Fig. 20
@=0.1. and below(e.g., mode 8 in Fig. I0the ridge the eigenstates
are delocalized as it is expected to be in the continuum spec-
formation of the phonon spectrufim the planet) —J) along  trym. But the shape of the eigenstates undergoes essential
an imaginary ||nd|et us call it “ridge”), which extends the Changes when approaching the ridge frequency_ Name|y,
localized internal modes inside the phonon spectrum in thgych eigenstates practically have no distortion in the oscilla-
direction of largerJ (see Fig. 8 This ridge is evidently tory subspace and thus ageasilocalizedsee modes 11-13
parallel to the upper cut-off frequency of the phonon bandjn Fig. 10. It should be indicated a similarity between these
with the spectrum curves looking like essentially differentquasilocalized states and the “exotic states” investigated in
left or right from the ridge. In the domain right to the ridge Refs.[36-3§, although we could not yet provide an in-depth
each symmetric eigenstate is equidistant from both neareghalysis of this analogy.
antisymmetric eigenstates. In the domain left to the ridge |t is notable that the quasilocalization of the eigenstates in
each symmetric eigenstate is paired with an appropriate afhe vicinity of the ridge frequency is accompanied by pro-
nounceddenseningf the eigenstates which can be viewed in

0.8 , : . 0.8
0
0.6 b Model 1 04 L 10
5204 0.0
02} -04
0.0 . -08 _
8 -4 0 4 3 P 10
0.8
0.4
= 0.0 E
> _
107
-04
08 ¢ 4 0 4 3 R 4 0 4 8
; - n h N I FIG. 11. The density of the eigenstates in the phonon band as a

funcion of the eigenfrequency fai=2.0 anda=0.1. The pro-
FIG. 9. Example of the shape of the lowest localized modes: th@ounced densening of the eigenstates in the vicinity of the quasilo-
translational modéMode 1), the Rice modéMode 2, and so on.  calized states is observed.
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Fig. 11 where we plotat fixed « andJ) the density of the ation of the kink'sinternal localized modesNe have dem-
eigenstates as function of frequency. Because of this pecwnstrated numerically that indefinite number of the localized
liarity inside the phonon spectrum, the ridge of quasilocal-internal modes came into existence wheapproaches zero.

ized states should be observable experimentally. We have revealed an existence of tgasilocalized states
inside the phonon spectrum for smalland largel. We have
V. CONCLUSIONS described their properties, in particular, a pronounced dens-

) . ening of the phonon spectrum in the vicinity of the quasilo-
We have investigated the effects of the Kac-Baker longaized states. We expect that similar to the localized internal

range interaction on the kink’s propertie§ in Fh.e discrete sinemgdes, the quasilocalized states could play a part in the kink
Gordon model. We have obtained an implicit form for the gynamics.

kink’s shape and energy and have shown that the kink width
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